skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Latham, David W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the discovery of two quadruple star systems—TIC 285853156 and TIC 392229331—each consisting of two bound eclipsing binary stars. Among the most compact quadruples known, TIC 392229331 and TIC 285853156 have the second and third shortest outer orbital periods (145 days and 152 days, respectively) after BU Canis Minoris (122 days). We demonstrate that both systems are long-term dynamically stable despite substantial outer orbital eccentricities (0.33 for TIC 285853156 and 0.56 for TIC 392229331). We previously reported these systems in V. B. Kostov et al. and V. B Kostov et al. as 2 + 2 hierarchical quadruple candidates producing two sets of primary and secondary eclipses in TESS data, as well as prominent eclipse timing variations on both binary components. We combine all available TESS data and new spectroscopic observations into a comprehensive photodynamical model, proving that the component binary stars are gravitationally bound in both systems and finding accurate stellar and orbital parameters for both systems, including very precise determinations of the outer periods. TIC 285853156 and TIC 392229331 represent the latest addition to the small population of well-characterized proven quadruple systems dynamically interacting on detectable timescales. 
    more » « less
  2. Abstract We report long-baseline interferometric observations with the CHARA Array that resolve six previously known double-lined spectroscopic binary systems in the Hyades cluster, with orbital periods ranging from 3 to 358 days: HD 27483, HD 283882, HD 26874, HD 27149, HD 30676, and HD 28545. We combine those observations with new and existing radial-velocity measurements, to infer the dynamical masses for the components as well as the orbital parallaxes. For most stars, the masses are determined to be better than 1%. Our work significantly increases the number of systems with mass determinations in the cluster. We find that, while current models of stellar evolution for the age and metallicity of the Hyades are able to reproduce the overall shape of the empirical mass–luminosity relation, they overestimate theV-band fluxes by about 0.1 mag between 0.5 and 1.4M. The disagreement is smaller inH, and near zero inK, and depends somewhat on the model. We also make use of the TESS light curves to estimate rotation periods for our targets, and detect numerous flares in one of them (HD 283882), estimating an average flaring rate of 0.44 events per day. 
    more » « less
  3. ABSTRACT Post-common envelope binaries (PCEBs) containing a white dwarf (WD) and a main-sequence (MS) star can constrain the physics of common envelope evolution and calibrate binary evolution models. Most PCEBs studied to date have short orbital periods (Porb ≲ 1 d), implying relatively inefficient harnessing of binaries’ orbital energy for envelope expulsion. Here, we present follow-up observations of five binaries from 3rd data release of Gaia mission containing solar-type MS stars and probable ultramassive WDs ($$M\gtrsim 1.2\ {\rm M}_{\odot}$$) with significantly wider orbits than previously known PCEBs, Porb = 18–49 d. The WD masses are much higher than expected for systems formed via stable mass transfer at these periods, and their near-circular orbits suggest partial tidal circularization when the WD progenitors were giants. These properties strongly suggest that the binaries are PCEBs. Forming PCEBs at such wide separations requires highly efficient envelope ejection, and we find that the observed periods can only be explained if a significant fraction of the energy released when the envelope recombines goes into ejecting it. Our one-dimensional stellar models including recombination energy confirm prior predictions that a wide range of PCEB orbital periods, extending up to months or years, can potentially result from Roche lobe overflow of a luminous asymptotic giant branch (AGB) star. This evolutionary scenario may also explain the formation of several wide WD + MS binaries discovered via self-lensing, as well as a significant fraction of post-AGB binaries and barium stars. 
    more » « less
  4. Abstract We present the discovery of 11 new transiting brown dwarfs (BDs) and low-mass M dwarfs from NASA’s Transiting Exoplanet Survey Satellite (TESS) mission: TOI-2844, TOI-3122, TOI-3577, TOI-3755, TOI-4462, TOI-4635, TOI-4737, TOI-4759, TOI-5240, TOI-5467, and TOI-5882. They consist of five BD companions and six very-low-mass stellar companions ranging in mass from 25MJto 128MJ. We used a combination of photometric time-series, spectroscopic, and high-resolution imaging follow-up as a part of the TESS Follow-up Observing Program (or TFOP) to characterize each system. With over 50 transiting BDs confirmed, we now have a large enough sample to directly test different formation and evolutionary scenarios. We provide a renewed perspective on the transiting “brown dwarf desert” and its role in differentiating between planetary and stellar formation mechanisms. Our analysis of the eccentricity distribution for the transiting BD sample does not support previous claims of a transition between planetary and stellar formation at ∼42MJ. We also contribute a first look into the metallicity distribution of transiting companions in the range 7–150MJ, showing that this does not support a ∼42MJtransition too. Finally, we also detect a significant lithium absorption feature in one of the BD hosts (TOI-5882). However, we determine that the host star is likely old based on rotation, kinematic, and photometric mdeasurements. We therefore claim that TOI-5882 may be a candidate for planetary engulfment. 
    more » « less
  5. We report discovery and characterization of a main-sequence G star orbiting a dark object with mass 1.90 ± 0.04 M . The system was discovered via Gaia astrometry and has an orbital period of 731 days. We obtained multi-epoch RV follow-up over a period of 639 days, allowing us to refine the Gaia orbital solution and precisely constrain the masses of both components. The luminous star is a 12 ,Gyr-old, low-metallicity halo star near the main-sequence turnoff (,K; ; ; M 0.79 M ) with a highly enhanced lithium abundance. The RV mass function sets a minimum companion mass for an edge-on orbit of M 2 > 1.67 M , well above the Chandrasekhar limit. The Gaia inclination constraint, i = 68.7 ± 1.4 ,deg, then implies a companion mass of M 2 = 1.90 ± 0.04 M . The companion is most likely a massive neutron star: the only viable alternative is two massive white dwarfs in a close binary, but this scenario is disfavored on evolutionary grounds. The system’s low eccentricity ( e = 0.122 ± 0.002 ) disfavors dynamical formation channels and implies that the neutron star likely formed with little mass loss ( 1 M ) and with a weak natal kick (). Stronger kicks with more mass loss are not fully ruled out but would imply that a larger population of similar systems with higher eccentricities should exist. The current orbit is too small to have accommodated the neutron star progenitor as a red supergiant or super-AGB star. The simplest formation scenario – isolated binary evolution – requires the system to have survived unstable mass transfer and common envelope evolution with a donor-to-accretor mass ratio > 10 . The system, which we call Gaia NS1, is likely a progenitor of symbiotic X-ray binaries and long-period millisecond pulsars. Its discovery challenges binary evolution models and bodes well for Gaia’s census of compact objects in wide binaries. 
    more » « less
  6. Abstract Cold Jovian planets play an important role in sculpting the dynamical environment in which inner terrestrial planets form. The core accretion model predicts that giant planets cannot form around low-mass M dwarfs, although this idea has been challenged by recent planet discoveries. Here, we investigate the occurrence rate of giant planets around low-mass (0.1–0.3M) M dwarfs. We monitor a volume-complete, inactive sample of 200 such stars located within 15 pc, collecting four high-resolution spectra of each M dwarf over six years and performing intensive follow-up monitoring of two candidate radial velocity variables. We use TRES on the 1.5 m telescope at the Fred Lawrence Whipple Observatory and CHIRON on the Cerro Tololo Inter-American Observatory 1.5 m telescope for our primary campaign, and MAROON-X on Gemini-North for high-precision follow up. We place a 95% confidence upper limit of 1.5% (68% confidence limit of 0.57%) on the occurrence ofMPsini> 1MJgiant planets out to the water snow line and provide additional constraints on the giant planet population as a function ofMPsiniand period. Beyond the snow line (100 K <Teq< 150 K), we place 95% confidence upper limits of 1.5%, 1.7%, and 4.4% (68% confidence limits of 0.58%, 0.66%, and 1.7%) for 3MJ<MPsini< 10MJ, 0.8MJ<MPsini< 3MJ, and 0.3MJ<MPsini< 0.8MJgiant planets, respectively; i.e., Jupiter analogs are rare around low-mass M dwarfs. In contrast, surveys of Sun-like stars have found that their giant planets are most common at these Jupiter-like instellations. 
    more » « less
  7. Astronomers have found more than a dozen planets transiting stars that are 10–40 million years old1, but younger transiting planets have remained elusive. The lack of such discoveries may be because planets have not fully formed at this age or because our view is blocked by the protoplanetary disk. However, we now know that many outer disks are warped or broken2; provided the inner disk is depleted, transiting planets may thus be visible. Here we report observations of the transiting planet IRAS 04125+2902 b orbiting a 3-million-year-old, 0.7-solar-mass, pre-main-sequence star in the Taurus Molecular Cloud. The host star harbours a nearly face-on (30 degrees inclination) transitional disk3 and a wide binary companion. The planet has a period of 8.83 days, a radius of 10.7 Earth radii (0.96 Jupiter radii) and a 95%-confidence upper limit on its mass of 90 Earth masses (0.3 Jupiter masses) from radial-velocity measurements, making it a possible precursor of the super-Earths and sub-Neptunes frequently found around main-sequence stars. The rotational broadening of the star and the orbit of the wide (4 arcseconds, 635 astronomical units) companion are both consistent with edge-on orientations. Thus, all components of the system are consistent with alignment except the outer disk; the origin of this misalignment is unclear. 
    more » « less
  8. ABSTRACT We report near-infrared long-baseline interferometric observations of the Hyades multiple system HD 284163, made with the Center for High Angular Resolution Astronomy array, as well as almost 43 yr of high-resolution spectroscopic monitoring at the Center for Astrophysics. Both types of observations resolve the 2.39 d inner binary, and also an outer companion in a 43.1 yr orbit. Our observations, combined with others from the literature, allow us to solve for the 3D inner and outer orbits, which are found to be at nearly right angles to each other. We determine the dynamical masses of the three stars (good to better than 1.4 per cent for the inner pair), as well as the orbital parallax. The secondary component (0.5245 ± 0.0047 M⊙) is now the lowest mass star with a dynamical mass measurement in the cluster. A comparison of these measurements with current stellar evolution models for the age and metallicity of the Hyades shows good agreement. All three stars display significant levels of chromospheric activity, consistent with the classification of HD 284163 as an RS CVn object. We present evidence that a more distant fourth star is physically associated, making this a hierarchical quadruple system. 
    more » « less